Electrostatic Particle Accelerator
   HOME

TheInfoList



OR:

An electrostatic particle accelerator is a
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
in which
charged particle In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, ...
s are accelerated to a high energy by a static
high voltage High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, ''high voltage'' refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant spec ...
potential. This contrasts with the other major category of particle accelerator, oscillating field particle accelerators, in which the particles are accelerated by oscillating electric fields. Owing to their simpler design, electrostatic types were the first particle accelerators. The two most common types are the
Van de Graaf generator A Van de Graaff generator is an electrostatic generator which uses a moving belt to accumulate electric charge on a hollow metal globe on the top of an insulated column, creating very high electric potentials. It produces very high voltage direct ...
invented by Robert Van de Graaff in 1929, and the Cockcroft-Walton accelerator invented by
John Cockcroft Sir John Douglas Cockcroft, (27 May 1897 – 18 September 1967) was a British physicist who shared with Ernest Walton the Nobel Prize in Physics in 1951 for splitting the atomic nucleus, and was instrumental in the development of nuclea ...
and
Ernest Walton Ernest Thomas Sinton Walton (6 October 1903 – 25 June 1995) was an Ireland, Irish physicist and Nobel Prize for Physics, Nobel laureate. He is best known for his work with John Cockcroft to construct one of the earliest types of particle acce ...
in 1932. The maximum particle energy produced by electrostatic accelerators is limited by the maximum voltage which can be achieved the machine. This is in turn limited by insulation breakdown to a few megavolts. Oscillating accelerators do not have this limitation, so they can achieve higher particle energies than electrostatic machines. The advantages of electrostatic accelerators over oscillating field machines include lower cost, the ability to produce continuous beams, and higher beam currents that make them useful to industry. As such, they are by far the most widely used particle accelerators, with industrial applications such as plastic
shrink wrap Shrink may refer to: Common meanings *Miniaturization *Shrink, a slang term for: ** a psychiatrist ** a psychoanalyst ** a psychologist Arts, entertainment, and media * ''Shrink'' (album), album by German indie rock/electronica group The Notwist ...
production, high power
X-ray machine An X-ray machine is any machine that involves X-rays. It may consist of an X-ray generator and an X-ray detector. Examples include: *Machines for medical projectional radiography *Machines for computed tomography *Backscatter X-ray machines, used ...
s,
radiation therapy Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a therapy using ionizing radiation, generally provided as part of cancer treatment to control or kill malignant cells and normally delivered by a linear accelerator. Radia ...
in medicine,
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
production,
ion implanter Ion implantation is a low-temperature process by which ions of one element are accelerated into a solid target, thereby changing the physical, chemical, or electrical properties of the target. Ion implantation is used in semiconductor device fab ...
s in semiconductor production, and sterilization. Many universities worldwide have electrostatic accelerators for research purposes. High energy oscillating field accelerators usually incorporate an electrostatic machine as their first stage, to accelerate particles to a high enough velocity to inject into the main accelerator. Electrostatic accelerators are a subset of
linear accelerator A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear ...
s (linacs). While all linacs accelerate particles in a straight line, electrostatic accelerators use a fixed accelerating field from a single high voltage source, while radiofrequency linacs use oscillating electric fields across a series of accelerating gaps.


Applications

Electrostatic accelerators have a wide array of applications in science and industry. In the realm of fundamental research, they are used to provide beams of
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
for research at energies up to several hundreds of
MeV In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacu ...
. In industry and materials science they are used to produce ion beams for materials modification, including ion implantation and ion beam mixing. There are also a number of materials analysis techniques based on electrostatic acceleration of heavy ions, including
Rutherford backscattering spectrometry Rutherford backscattering spectrometry (RBS) is an analytical technique used in materials science. Sometimes referred to as high-energy ion scattering (HEIS) spectrometry, RBS is used to determine the structure and composition of materials by mea ...
(RBS),
particle-induced X-ray emission Particle-induced X-ray emission or proton-induced X-ray emission (PIXE) is a technique used for determining the elemental composition of a material or a sample. When a material is exposed to an ion beam, atomic interactions occur that give off EM ...
(PIXE),
accelerator mass spectrometry Accelerator mass spectrometry (AMS) is a form of mass spectrometry that accelerates ions to extraordinarily high kinetic energies before mass analysis. The special strength of AMS among the mass spectrometric methods is its power to separate a r ...
(AMS),
Elastic recoil detection Elastic recoil detection analysis (ERDA), also referred to as forward recoil scattering (or, contextually, spectrometry), is an ion beam analysis technique in materials science to obtain elemental concentration depth profiles in thin films. This ...
(ERD), and others. Although these machines primarily accelerate
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, there are a number of compact machines used to accelerate
electrons The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
for industrial purposes including sterilization of medical instruments, x-ray production, and silicon wafer production. A special application of electrostatic particle accelerator are dust accelerators in which nanometer to micrometer sized electrically charged dust particles are accelerated to speeds up to 100 km/s. Dust accelerators are used for impact cratering studies, calibration of
impact ionization Impact ionization is the process in a material by which one energetic charge carrier can lose energy by the creation of other charge carriers. For example, in semiconductors, an electron (or Electron hole, hole) with enough kinetic energy can kno ...
dust detectors, and meteor studies.


Single-ended machines

Using a
high voltage High voltage electricity refers to electrical potential large enough to cause injury or damage. In certain industries, ''high voltage'' refers to voltage above a certain threshold. Equipment and conductors that carry high voltage warrant spec ...
terminal kept at a static potential on the order of millions of volts,
charged particle In physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, ...
s can be accelerated. In simple language, an
electrostatic generator An electrostatic generator, or electrostatic machine, is an electrical generator that produces ''static electricity'', or electricity at high voltage and low continuous current. The knowledge of static electricity dates back to the earliest ci ...
is basically a giant
capacitor A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals. The effect of ...
(although lacking plates). The high voltage is achieved either using the methods of Cockcroft & Walton or Van de Graaff, with the accelerators often being named after these inventors. Van de Graaff's original design places electrons on an insulating sheet, or belt, with a metal comb, and then the sheet physically transports the immobilized electrons to the terminal. Although at high voltage, the terminal is a conductor, and there is a corresponding comb inside the conductor which can pick up the electrons off the sheet; owing to
Gauss's law In physics and electromagnetism, Gauss's law, also known as Gauss's flux theorem, (or sometimes simply called Gauss's theorem) is a law relating the distribution of electric charge to the resulting electric field. In its integral form, it sta ...
, there is no electric field inside a conductor, so the electrons are not repulsed by the platform once they are inside. The belt is similar in style to a conventional conveyor belt, with one major exception: it is seamless. Thus, if the belt is broken, the accelerator must be disassembled to some degree in order to replace the belt, which, owing to its constant rotation and being made typically of a
rubber Rubber, also called India rubber, latex, Amazonian rubber, ''caucho'', or ''caoutchouc'', as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds. Thailand, Malaysia, and ...
, is not a particularly uncommon occurrence. The practical difficulty with belts led to a different medium for physically transporting the charges: a chain of pellets. Unlike a normal chain, this one is non-conducting from one end to the other, as both insulators and conductors are used in its construction. These types of accelerators are usually called
Pelletron A Pelletron is a type of electrostatic generator, structurally similar to a Van de Graaff generator. Pelletrons have been built in many sizes, from small units producing voltages up to 500 kilovolts (kV) and beam energies up to 1 megaelectronvolt ...
s. Once the platform can be electrically charged by one of the above means, some source of positive ions is placed on the platform at the end of the beam line, which is why it's called the terminal. However, as the ion source is kept at a high potential, one cannot access the ion source for control or maintenance directly. Thus, methods such as plastic rods connected to various levers inside the terminal can branch out and be toggled remotely. Omitting practical problems, if the platform is positively charged, it will repel the ions of the same electric polarity, accelerating them. As E=qV, where E is the emerging energy, q is the ionic charge, and V is the terminal voltage, the maximum energy of particles accelerated in this manner is practically limited by the discharge limit of the high voltage platform, about 12 MV under ambient atmospheric conditions. This limit can be increased, for example, by keeping the HV platform in a tank of an
insulating gas A dielectric gas, or insulating gas, is a dielectric material in gaseous state. Its main purpose is to prevent or rapidly quench electric discharges. Dielectric gases are used as electrical insulators in high voltage applications, e.g. transformers ...
with a higher
dielectric constant The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulat ...
than air, such as SF6 which has dielectric constant roughly 2.5 times that of air. However, even in a tank of SF6 the maximum attainable voltage is around 30 MV. There could be other gases with even better insulating powers, but SF6 is also chemically inert and non-
toxic Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
. To increase the maximum acceleration energy further, the
tandem Tandem, or in tandem, is an arrangement in which a team of machines, animals or people are lined up one behind another, all facing in the same direction. The original use of the term in English was in ''tandem harness'', which is used for two ...
concept was invented to use the same high voltage twice.


Tandem accelerators

Conventionally, positively charged ions are accelerated because this is the polarity of the atomic nucleus. However, if one wants to use the same static electric potential twice to accelerate ions, then the polarity of the ions' charge must change from anions to cations or vice versa while they are inside the conductor where they will feel no electric force. It turns out to be simple to remove, or strip, electrons from an energetic ion. One of the properties of ion interaction with matter is the exchange of electrons, which is a way the ion can lose energy by depositing it within the matter, something we should intuitively expect of a projectile shot at a solid. However, as the target becomes thinner or the projectile becomes more energetic, the amount of energy deposited in the foil becomes less and less. Tandems locate the ion source outside the terminal, which means that accessing the ion source while the terminal is at high voltage is significantly less difficult, especially if the terminal is inside a gas tank. So then an anion beam from a
sputter In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and ca ...
ing ion source is injected from a relatively lower voltage platform towards the high voltage terminal. Inside the terminal, the beam impinges on a thin foil (on the order of micrograms per square centimeter), often
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent In chemistry, the valence (US spelling) or valency (British spelling) of an element is the measure of its combining capacity with o ...
or
beryllium Beryllium is a chemical element with the symbol Be and atomic number 4. It is a steel-gray, strong, lightweight and brittle alkaline earth metal. It is a divalent element that occurs naturally only in combination with other elements to form mi ...
, stripping electrons from the ion beam so that they become cations. As it is difficult to make anions of more than -1 charge state, then the energy of particles emerging from a tandem is E=(q+1)V, where we have added the second acceleration potential from that anion to the positive charge state q emerging from the stripper foil; we are adding these different charge signs together because we are increasing the energy of the nucleus in each phase. In this sense, we can see clearly that a tandem can double the maximum energy of a proton beam, whose maximum charge state is merely +1, but the advantage gained by a tandem has diminishing returns as we go to higher mass, as, for example, one might easily get a 6+ charge state of a
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
beam. It is not possible to make every element into an anion easily, so it is very rare for tandems to accelerate any
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemi ...
es heavier than
helium Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, although KrF and XeF have been successfully produced and accelerated with a tandem. It is not uncommon to make compounds in order to get anions, however, and TiH2 might be extracted as TiH and used to produce a proton beam, because these simple, and often weakly bound chemicals, will be broken apart at the terminal stripper foil. Anion ion beam production was a major subject of study for tandem accelerator application, and one can find recipes and yields for most elements in the Negative Ion Cookbook. Tandems can also be operated in terminal mode, where they function like a single-ended electrostatic accelerator, which is a more common and practical way to make beams of noble gases. The name 'tandem' originates from this dual-use of the same high voltage, although tandems may also be named in the same style of conventional electrostatic accelerators based on the method of charging the terminal. The MP Tandem van de Graaff is a type of Tandem accelerator. Ten of these were installed in the 20th century; six in North America and four in Europe.


Geometry

One trick which has to be considered with electrostatic accelerators is that usually vacuum beam lines are made of steel. However, one cannot very well connect a conducting pipe of steel from the high voltage terminal to the ground. Thus, many rings of a strong glass, like
Pyrex Pyrex (trademarked as ''PYREX'' and ''pyrex'') is a brand introduced by Corning Inc. in 1915 for a line of clear, low-thermal-expansion borosilicate glass used for laboratory glassware and kitchenware. It was later expanded to include kitchenwa ...
, are assembled together in such a manner that their interface is a vacuum seal, like a copper
gasket Some seals and gaskets A gasket is a mechanical seal which fills the space between two or more mating surfaces, generally to prevent leakage from or into the joined objects while under compression. It is a deformable material that is used to c ...
; a single long glass tube could implode under vacuum or fracture supporting its own weight. Importantly for the physics, these inter-spaced conducting rings help to make a more uniform electric field along the accelerating column. This beam line of glass rings is simply supported by compression at either end of the terminal. As the glass is non-conducting, it could be supported from the ground, but such supports near the terminal could induce a discharge of the terminal, depending on the design. Sometimes the compression is not sufficient, and the entire beam line may collapse and shatter. This idea is especially important to the design of tandems, because they naturally have longer beam lines, and the beam line must run through the terminal. Most often electrostatic accelerators are arranged in a horizontal line. However, some tandems may have a "U" shape, and in principle the beam can be turned to any direction with a magnetic dipole at the terminal. Some electrostatic accelerators are arranged vertically, where either the ion source or, in the case of a "U" shaped vertical tandem, the terminal, is at the top of a tower. A tower arrangement can be a way to save space, and also the beam line connecting to the terminal made of glass rings can take some advantage of gravity as a natural source of compression.


Particle energy

In a single-ended electrostatic accelerator the charged particle is accelerated through a single potential difference between two electrodes, so the output particle energy E is equal to the charge on the particle q multiplied by the accelerating voltage V :E = qV In a tandem accelerator the particle is accelerated twice by the same voltage, so the output energy is 2qV. If the charge q is in conventional units of
coulomb The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). In the present version of the SI it is equal to the electric charge delivered by a 1 ampere constant current in 1 second and to elementary char ...
s and the potential V is in
volt The volt (symbol: V) is the unit of electric potential, electric potential difference (voltage), and electromotive force in the International System of Units (SI). It is named after the Italian physicist Alessandro Volta (1745–1827). Defi ...
s the particle energy will be given in
joule The joule ( , ; symbol: J) is the unit of energy in the International System of Units (SI). It is equal to the amount of work done when a force of 1 newton displaces a mass through a distance of 1 metre in the direction of the force applied ...
s. However because the charge on elementary particles is so small (the charge on the electron is 1.6x10−19 coulombs), the energy in joules is a very small number. Since all elementary particles have charges which are multiples of the
elementary charge The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundame ...
on the electron, e = 1.6(10^{-19}) coulombs, particle physicists use a different unit to express particle energies, the ''
electron volt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. ...
'' (eV) which makes it easier to calculate. The electronvolt is equal to the energy a particle with a charge of 1''e'' gains passing through a potential difference of one volt. In the above equation, if q is measured in elementary charges ''e'' and V is in volts, the particle energy E is given in eV. For example, if an
alpha particle Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. They are generally produced in the process of alpha decay, but may also be produce ...
which has a charge of 2''e'' is accelerated through a voltage difference of one million volts (1 MV), it will have an energy of two million electron volts, abbreviated 2 MeV. The accelerating voltage on electrostatic machines is in the range 0.1 to 25 MV and the charge on particles is a few elementary charges, so the particle energy is in the low MeV range. More powerful accelerators can produce energies in the giga electron volt (GeV) range.


References


External links


IAEA database of electrostatic accelerators
Accelerator physics Nuclear physics